

Space Robotics Researches

Nakanishi Laboratory Tokyo Institute of Technology

http://www.srobot.mech.e.titech.ac.jp/index_e.html

Orbital Servicing Robot

Robotization of each service are expected for safe and economy

Technology for Orbital Service

Contact Dynamics for Orbital Servicing

Force control for capturing free-flying object

Maintain the contact after first impact

Contact force analysis for spacecraft capture

Dynamics analysis of a ISStransporter capture operation

Space Debris Capture Devices

Gecko adhesive gripper

Gecko Tape ©Nitto Denko Corp.

Mechanical automatic gripper

Low contact force hand (LCFH)

Space debris wrapping gripper

Retractable multi joint gripper

Convex spring gripper

New Locomotion System in Space

Tether based locomotion Hand Rail (Anchor Point) By supporting a robot with tethers, the robot can move within a space as defined by the anchor points of the tethers.

Orbital Demonstration at ISS (REX-J mission, 2012)

Morphable beam based locomotion

Wall

Handrai

Morphable Beam

By extending and bending a morphable beam, the robot can move in space

